DATASHEET

NI 9269

4 AO, ±10 V, ±40 V Stacked, 16 Bit, 100 kS/s/ch Simultaneous

- Screw-terminal connectivity
- 250 Vrms, CAT II, channel-to-channel isolation

The NI 9269 is a four-channel, 100 kS/s per channel, channel-to-channel isolated module for any NI CompactRIO and NI CompactDAQ chassis. Similar to the NI 9263 module, the NI 9269 adds channel-to-channel isolation for increased safety, improved signal quality, and the ability to stack channels to output up to 40 V. NI CompactDAQ support has been added as of NI-DAQmx Version 9.1 Channel-to-channel isolation is commonly needed for applications that have multiple electrical systems, such as automotive test, or industrial applications that are subjected to increased noise and often contain multiple ground planes.

		C SI	ERIES ANA	LOG OUTPL	JT MODULE COMPARIS	ON	
Product Name	Module Type	Signal Ranges	Channels	Sample Rate	Isolation	Resolution	Connectivity
NI 9260	Voltage Output	3 Vrms	2	51.2 kS/s/ch	None	24-Bit	BNC, mini XLR
NI 9263	Voltage Output	±10 V	4	100 kS/s/ch	250 Vrms Ch-Earth	16-Bit	Screw-Terminal, Spring-Terminal
NI 9264	Voltage Output	±10 V	16	25 kS/s/ch	250 Vrms Ch-Earth (Spring) 60 VDC Ch-Earth (DSUB)	16-Bit	Spring-Terminal, 37-Pin DSUB
NI 9265	Current Output	0 mA to 20 mA	4	100 kS/s/ch	250 Vrms Ch-Earth, Vsup-Earth, COM-Earth	16-Bit	Screw-Terminal
NI 9269	Voltage Output	±10 V	4	100 kS/s/ch	250 Vrms Ch-Ch 250 Vrms Ch-Earth	16-Bit	Screw-Terminal

NI C Series Overview

NI provides more than 100 C Series modules for measurement, control, and communication applications. C Series modules can connect to any sensor or bus and allow for high-accuracy measurements that meet the demands of advanced data acquisition and control applications.

- Measurement-specific signal conditioning that connects to an array of sensors and signals
- Isolation options such as bank-to-bank, channel-to-channel, and channel-to-earth ground
- -40 °C to 70 °C temperature range to meet a variety of application and environmental needs
- Hot-swappable

The majority of C Series modules are supported in both CompactRIO and CompactDAO platforms and you can move modules from one platform to the other with no modification.

CompactRIO

CompactRIO combines an open-embedded architecture with small size, extreme ruggedness, and C Series modules in a platform powered by the NI LabVIEW reconfigurable I/O (RIO) architecture. Each system contains an FPGA for custom timing, triggering, and processing with a wide array of available modular I/O to meet any embedded application requirement.

CompactDAQ

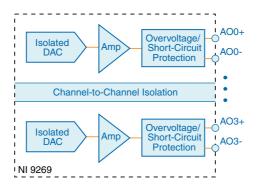
CompactDAO is a portable, rugged data acquisition platform that integrates connectivity, data acquisition, and signal conditioning into modular I/O for directly interfacing to any sensor or signal. Using CompactDAO with LabVIEW, you can easily customize how you acquire, analyze, visualize, and manage your measurement data.

Software

LabVIEW Professional Development System for Windows

- Use advanced software tools for large project development
- Generate code automatically using DAO Assistant and Instrument I/O Assistant
- Use advanced measurement analysis and digital signal processing
- Take advantage of open connectivity with DLLs, ActiveX, and .NET objects
- Build DLLs, executables, and MSI installers

NI LabVIEW FPGA Module


- Design FPGA applications for NI RIO hardware
- Program with the same graphical environment used for desktop and real-time applications
- Execute control algorithms with loop rates up to 300 MHz
- Implement custom timing and triggering logic, digital protocols, and DSP algorithms
- Incorporate existing HDL code and third-party IP including Xilinx IP generator functions
- Purchase as part of the LabVIEW Embedded Control and Monitoring Suite

NI LabVIEW Real-Time Module

- Design deterministic real-time applications with LabVIEW graphical programming
- Download to dedicated NI or third-party hardware for reliable execution and a wide selection of I/O
- Take advantage of built-in PID control, signal processing, and analysis functions
- Automatically take advantage of multicore CPUs or set processor affinity manually
- Take advantage of real-time OS, development and debugging support, and board support
- Purchase individually or as part of a LabVIEW suite

Circuitry

The analog output channels are floating with respect to earth ground and each other. Each channel has a digital-to-analog converter (DAC) that produces a voltage signal. Each channel provides an independent signal path, enabling you to update all four channels simultaneously. Each channel also has overvoltage and short-circuit protection.

NI 9269 Specifications

The following specifications are typical for the range -40 °C to 70 °C unless otherwise noted. All voltages are relative to the AO- signal on each channel unless otherwise noted.

Caution Do not operate the NI 9269 in a manner not specified in this document. Product misuse can result in a hazard. You can compromise the safety protection built into the product if the product is damaged in any way. If the product is damaged, return it to NI for repair.

Output Characteristics

Number of channels	4 analog output channels
DAC resolution	16 bits
Type of DAC	R-2R
Power-on output state	High impedance
Startup voltage ¹	0 V
Power-down output state ²	High impedance
Output voltage range ³	
Nominal	±10 V
Minimum	±10.38 V
Typical	±10.47 V
Maximum	±10.56 V
Current drive	±20 mA all channels maximum; ±10 mA per channel typical
Output impedance	100 mΩ

¹ When the output stage powers on, a glitch occurs for 5 μs peaking at -900 mV.

² When the module powers down, a glitch occurs for 20 μs peaking at -600 mV.

³ Refer to the device Getting Started Guide on *ni.com/manuals* for information about the stacked nominal output voltage range and current drive.

⁴ Range equals 10.47 V

Table 1. Accuracy

Measurement Conditions		Percent of Reading (Gain Error)	Percent of Range ⁴ (Offset Error)
Calibrated	Maximum (-40 °C to 70 °C)	0.17%	0.15%
	Typical (25 °C, ±5 °C)	0.05%	0.01%
Uncalibrated ⁵	Maximum (-40 °C to 70 °C)	0.44%	0.37%
	Typical (25 °C, ±5 °C)	0.14%	0.05%

Stability		
Gain drift	5 ppm/°C	
Offset drift	80 μV/°C	
Protection		
Overvoltage	±30 V	
Short-circuit	Indefinitely	

Table 2. Update Time

Number of Channels	Update Time for NI cRIO-9151 R Series Expansion Chassis	Update Time for All Other Chassis
1	3.5 μs minimum	3 μs minimum
2	6.5 μs minimum	5 μs minimum
3	9.3 μs minimum	7.5 μs minimum
4	12.3 μs minimum	9.7 μs minimum

Noise	$300 \mu Vrms$
Slew rate	7 V/μs
Crosstalk	
Channel-to-channel	100 dB
Common-mode voltage	120 dB

Uncalibrated accuracy refers to the accuracy achieved when acquiring in raw or unscaled modes where the calibration constants stored in the module are not applied to the data.

Settling time

String time	
100 pF load, to 1 LSB	
Full-scale step	20 μs
1 V step	10 μs
0.1 V step	10 μs
1 k $\Omega \parallel$ 100 pF load, to 4 LSB	
Full-scale step	20 μs
Capacity drive	1,500 pF maximum
Monotonicity	16 bits
DNL	±1 LSB maximum
INL (best fit)	±2 LSBs maximum

Power Requirements

Power consumption from chassis	3
Active mode	1 W maximum
Sleep mode	120 μW maximum
Thermal dissipation (at 70 °C)	
Active mode	1.4 W maximum
Sleep mode	77 mW maximum

Physical Characteristics

If you need to clean the module, wipe it with a dry towel.

Tip For two-dimensional drawings and three-dimensional models of the C Series module and connectors, visit ni.com/dimensions and search by module number.

Screw-terminal wiring		
Gauge	0.05 mm ² to 1.5 mm ² (30 AWG to 14 AWG) copper conductor wire	
Wire strip length	6 mm (0.24 in.) of insulation stripped from the end	
Temperature rating	90 °C minimum	
Torque for screw terminals	0.22 N · m to 0.25 N · m (1.95 lb · in. to 2.21 lb · in.)	

Wires per screw terminal	One wire per screw terminal; two wires per screw terminal using a 2-wire ferrule
Ferrules	0.25 mm ² to 1.5 mm ²
Connector securement	
Securement type	Screw flanges provided
Torque for screw flanges	0.2 N · m (1.80 lb · in.)
Weight	156 g (5.5 oz)
Safety Voltages	
Channel-to-channel	
Continuous	250 Vrms, Measurement Category II
Withstand	1,390 Vrms, verified by a 5 s dielectric withstand test
Channel-to-earth ground	
Continuous	250 Vrms, Measurement Category II

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as *MAINS* voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

withstand test

2,300 Vrms, verified by a 5 s dielectric

60 VDC, Measurement Category I

Withstand

channel-to-earth ground)

Division 2/Zone 2 hazardous locations

applications (Channel-to-channel and

Caution Do not connect the NI 9269 to signals or use for measurements within Measurement Categories II, III, or IV.

Note Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Measurement Category II is for measurements performed on circuits directly connected to the electrical distribution system. This category refers to local-level electrical distribution, such as that provided by a standard wall outlet, for example, 115 V for U.S. or 230 V for Europe.

Caution Do not connect the NI 9269 to signals or use for measurements within Measurement Categories III or IV.

Hazardous Locations

U.S. (UL)	Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, AEx nA IIC T4
Canada (C-UL)	Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, Ex nA IIC T4
Europe (ATEX) and International (IECEx)	Ex nA IIC T4 Gc

Safety and Hazardous Locations Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1. EN 61010-1
- UL 61010-1, CSA 61010-1
- EN 60079-0:2012. EN 60079-15:2010
- IEC 60079-0: Ed 6, IEC 60079-15; Ed 4
- UL 60079-0; Ed 5, UL 60079-15; Ed 3
- CSA 60079-0:2011, CSA 60079-15:2012

Note For UL and other safety certifications, refer to the product label or the *Online* Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for sensitive electrical equipment for measurement, control, and laboratory use:

- EN 61326 (IEC 61326): Class A emissions; Industrial immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the Online Product Certification section.

CE Compliance (E

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 94/9/EC; Potentially Explosive Atmospheres (ATEX)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit *ni.com/certification*, search by model number or product line, and click the appropriate link in the Certification column

Shock and Vibration

To meet these specifications, you must panel mount the system.

Operating vibration	
Random (IEC 60068-2-64)	5 g_{rms} , 10 Hz to 500 Hz
Sinusoidal (IEC 60068-2-6)	5 g, 10 Hz to 500 Hz
Operating shock (IEC 60068-2-27)	30 g, 11 ms half sine; 50 g, 3 ms half sine; 18 shocks at 6 orientations

Environmental

Refer to the manual for the chassis you are using for more information about meeting these specifications.

Operating temperature (IEC 60068-2-1, IEC 60068-2-2)	-40 °C to 70 °C
Storage temperature (IEC 60068-2-1, IEC 60068-2-2)	-40 °C to 85 °C
Ingress protection	IP40
Operating humidity (IEC 60068-2-78)	10% RH to 90% RH, noncondensing
Storage humidity (IEC 60068-2-78)	5% RH to 95% RH, noncondensing
Pollution Degree	2
Maximum altitude	2,000 m

Indoor use only.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

X

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs china。 (For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Calibration

You can obtain the calibration certificate and information about calibration services for the NI 9269 at ni.com/calibration.

Calibration interval

1

Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help>Patents in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.